11 research outputs found

    3D Shape Segmentation with Projective Convolutional Networks

    Full text link
    This paper introduces a deep architecture for segmenting 3D objects into their labeled semantic parts. Our architecture combines image-based Fully Convolutional Networks (FCNs) and surface-based Conditional Random Fields (CRFs) to yield coherent segmentations of 3D shapes. The image-based FCNs are used for efficient view-based reasoning about 3D object parts. Through a special projection layer, FCN outputs are effectively aggregated across multiple views and scales, then are projected onto the 3D object surfaces. Finally, a surface-based CRF combines the projected outputs with geometric consistency cues to yield coherent segmentations. The whole architecture (multi-view FCNs and CRF) is trained end-to-end. Our approach significantly outperforms the existing state-of-the-art methods in the currently largest segmentation benchmark (ShapeNet). Finally, we demonstrate promising segmentation results on noisy 3D shapes acquired from consumer-grade depth cameras.Comment: This is an updated version of our CVPR 2017 paper. We incorporated new experiments that demonstrate ShapePFCN performance under the case of consistent *upright* orientation and an additional input channel in our rendered images for encoding height from the ground plane (upright axis coordinate values). Performance is improved in this settin

    Efficient Deduplication and Leakage Detection in Large Scale Image Datasets with a focus on the CrowdAI Mapping Challenge Dataset

    Full text link
    Recent advancements in deep learning and computer vision have led to widespread use of deep neural networks to extract building footprints from remote-sensing imagery. The success of such methods relies on the availability of large databases of high-resolution remote sensing images with high-quality annotations. The CrowdAI Mapping Challenge Dataset is one of these datasets that has been used extensively in recent years to train deep neural networks. This dataset consists of ∼  \sim\ 280k training images and ∼  \sim\ 60k testing images, with polygonal building annotations for all images. However, issues such as low-quality and incorrect annotations, extensive duplication of image samples, and data leakage significantly reduce the utility of deep neural networks trained on the dataset. Therefore, it is an imperative pre-condition to adopt a data validation pipeline that evaluates the quality of the dataset prior to its use. To this end, we propose a drop-in pipeline that employs perceptual hashing techniques for efficient de-duplication of the dataset and identification of instances of data leakage between training and testing splits. In our experiments, we demonstrate that nearly 250k(∼  \sim\ 90%) images in the training split were identical. Moreover, our analysis on the validation split demonstrates that roughly 56k of the 60k images also appear in the training split, resulting in a data leakage of 93%. The source code used for the analysis and de-duplication of the CrowdAI Mapping Challenge dataset is publicly available at https://github.com/yeshwanth95/CrowdAI_Hash_and_search .Comment: 9 pages, 2 figure

    FacadeNet: Conditional Facade Synthesis via Selective Editing

    Full text link
    We introduce FacadeNet, a deep learning approach for synthesizing building facade images from diverse viewpoints. Our method employs a conditional GAN, taking a single view of a facade along with the desired viewpoint information and generates an image of the facade from the distinct viewpoint. To precisely modify view-dependent elements like windows and doors while preserving the structure of view-independent components such as walls, we introduce a selective editing module. This module leverages image embeddings extracted from a pre-trained vision transformer. Our experiments demonstrated state-of-the-art performance on building facade generation, surpassing alternative methods

    Learning Material-Aware Local Descriptors for 3D Shapes

    Full text link
    Material understanding is critical for design, geometric modeling, and analysis of functional objects. We enable material-aware 3D shape analysis by employing a projective convolutional neural network architecture to learn material- aware descriptors from view-based representations of 3D points for point-wise material classification or material- aware retrieval. Unfortunately, only a small fraction of shapes in 3D repositories are labeled with physical mate- rials, posing a challenge for learning methods. To address this challenge, we crowdsource a dataset of 3080 3D shapes with part-wise material labels. We focus on furniture models which exhibit interesting structure and material variabil- ity. In addition, we also contribute a high-quality expert- labeled benchmark of 115 shapes from Herman-Miller and IKEA for evaluation. We further apply a mesh-aware con- ditional random field, which incorporates rotational and reflective symmetries, to smooth our local material predic- tions across neighboring surface patches. We demonstrate the effectiveness of our learned descriptors for automatic texturing, material-aware retrieval, and physical simulation. The dataset and code will be publicly available.Comment: 3DV 201

    Recurring Part Arrangements in Shape Collections

    No full text
    Extracting semantically related parts across models remains challenging, especially without supervision. The common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric features that can directly identify related parts. In the presence of large shape variations, common geometric features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach, where instead of part geometry, part arrangements extracted from each model are compared. The key observation is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level structures, remain consistent, and hence can be used to discover latent commonalities among semantically related shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets and report advantages over geometric similarity-based bottom-up co-segmentation algorithms. 1

    Data Leakage Detection and De-duplication in Large Scale Image Datasets

    No full text
    Auxilliary files for the paper "Data Leakage Detection and De-duplication in Large Scale Image Datasets"Please read README.md for a detailed description and instructions on how to use these auxilliary files.</p
    corecore